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Abstract

Categorizing individual cells into one of many known cell type categories, also
known as cell type annotation, is a critical step in the analysis of single-cell genomics
data. The current process of annotation is time-intensive and subjective, which has led
to different studies describing cell types with labels of varying degrees of resolution.
While supervised learning approaches have provided automated solutions to annota-
tion, there remains a significant challenge in fitting a unified model for multiple datasets
with inconsistent labels. In this article, we propose a new multinomial logistic regres-
sion estimator which can be used to model cell type probabilities by integrating multiple
datasets with labels of varying resolution. To compute our estimator, we solve a non-
convex optimization problem using a blockwise proximal gradient descent algorithm.
We show through simulation studies that our approach estimates cell type probabilities
more accurately than competitors in a wide variety of scenarios. We apply our method
to ten single-cell RNA-seq datasets and demonstrate its utility in predicting fine reso-
lution cell type labels on unlabeled data as well as refining cell type labels on data with
existing coarse resolution annotations. An R package implementing the method is avail-
able at https://github.com/keshav-motwani/IBMR and the collection of datasets we
analyze is available at https://github.com/keshav-motwani/AnnotatedPBMC.

Keywords: Integrative analysis, multinomial logistic regression, variable selection,
group lasso, nonconvex optimization, single-cell genomics

1 Introduction

1.1 Overview

One of the first and most important tasks in the analysis of single-cell data is cell type an-

notation, where individual cells are categorized into one of many known cell type categories

∗Correspondence: amolstad@ufl.edu
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having well-characterized biological functions. The vast majority of studies perform annota-

tion by first clustering cells based on their gene expression and then manually labeling the

clusters based on upregulated marker genes within each cluster (Schaum et al., 2018). This

is often time-intensive and arguably subjective, as the set of cell type labels used is incon-

sistent across studies: they vary based on scientific interests of the investigators, aims of the

study, and availability of external data. In turn, a large number of automated methods have

been developed to standardize the cell type annotation process, for example, see Table 1 of

Pasquini et al. (2021) and references therein.

The vast majority of the existing approaches for automated cell type annotation fit a

classification model using a single training dataset (e.g., a dataset collected and annotated

by a single investigator/lab), treating normalized gene expression as predictors. Cell types in

a new (unannotated) dataset are then predicted according to the fitted model. In Abdelaal

et al. (2019), more than 20 such methods were benchmarked and shown to perform well in a

variety of settings. However, these methods tended to perform poorly in terms of prediction

across datasets (varying by batch, lab, or protocols) and in datasets with a large number

of labels (i.e., high resolution cell type categories) (Abdelaal et al., 2019). Furthermore, a

crucial choice for these methods is deciding which dataset should be used to train the model.

Datasets can differ in numerous ways, but most relevant to the task we consider: they can

have drastically different cell type labels and differ in the amount of detail provided by each

label across datasets (Ma et al., 2021). The existing annotation approaches are also limited

to single training datasets or multiple datasets with consistent cell type labels. Here, we

propose a novel approach for automated annotation that overcomes these limitations.

We begin by depicting the situation of differing degrees of resolution in labels used to

annotate different datasets in Figure 1. In this hypothetical situation, one has access to

three datasets, Datasets 1, 2, and 3, each of which has been expertly annotated manually.

In Dataset 1, cells are labeled as either CD4+ or CD8+. If one trained a model using only

Dataset 1, the only possible predicted labels for a new dataset would be CD4+ or CD8+.

In Dataset 2, the cells are labeled as one of naive CD4+, effector memory CD4+, central

memory CD4+, or CD8+, so if one instead trained the model using Dataset 2, it would be

possible to predict/annotate the subcategories of CD4+ T-cells with finer resolution labels

when compared to Dataset 1. Dataset 3 has finer resolution labels for subcategories of CD8+

cells than Dataset 2, but does not distinguish between the two finer CD4+ memory cell types

like Dataset 2. Thus, using a single dataset to train annotation models presents a trade-off

between fine resolution labels for subcategories of CD4+ and subcategories of CD8+ cells.
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Figure 1: Illustrative example of label structure across datasets. (a-c) The tree depicts the
true hierarchical structure of cell type categories, with cells in Datasets 1–3 annotated at
different resolution labels, highlighted in red. Finest resolution categories are defined by the
labels at the terminal nodes of the tree. (d) Graphical representation of binning functions
for Datasets 1–3 (see Section 2.1), where within each row, a unique color represents a label
in that dataset which is a bin of finest resolution categories.

If one wanted to incorporate all datasets into the framework of existing annotation meth-

ods, the level of detail in the annotations of Dataset 2 and Dataset 3 must be reduced by

labeling cells of all three datasets as one of CD4+ or CD8+. However, this results in a sig-

nificant loss of information and may limit downstream scientific applications. Alternatively,

one could mix-and-match subsets of cells from different datasets which have the most detail

for specific cell types. In this example, it would mean taking the subcategories of CD4+ cells

from Dataset 2 and subcategories of CD8+ cells from Dataset 3 and ignoring Dataset 1. As

such, this approach would be less efficient than one which uses all available data, and more-

over, will generalize poorly since technical differences across datasets (i.e., “batch effects”)
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may be confounded with some cell type categories. Despite the existence of hundreds of

publicly available datasets with expertly annotated cell types, existing methods are limited

in their ability to integrate a wide-array of datasets due to varying label resolution.

Ideally, we would like to use all the data from all three datasets to train an annotation

model without any loss of information. To do so, our proposed approach takes advantage

of the “binned” label structures (Figure 1d). For example, cells with the label CD4+ in

Dataset 1, biologically, must belong to one of the following finest resolution categories: naive

CD4+, effector memory CD4+, or central memory CD4+ The specific label, however, is

unknown without additional analysis or manual annotation. In this article, we propose a

new classification method which will allow investigators to (i) use all available datasets jointly

to train a unified classification model without loss of information, and (ii) make cell type

predictions/annotations at the finest resolution labels allowed by the union of all datasets’

labels. For example, given the datasets depicted in Figure 1, our method would fit a model

using data from all cells from all three datasets, and would yield predicted probabilities of

each cell belonging to the categories: naive CD4+, effector memory CD4+, central memory

CD4+, naive CD8+, effector memory CD8+, or central memory CD8+ (i.e., the categories

at the terminal nodes of the tree). Notably, our method does not require that labels are

tree-structured as in this example. We require only that labels are amenable to “binning”,

which we describe in Section 2.1.

1.2 Existing approaches

The issue of varying labels across datasets has been recognized in the recent single-cell lit-

erature. For example, Shasha et al. (2021) manually reannotated publicly available datasets

which collected both single-cell gene expression and protein expression data, and fit a cell

type classification model across all datasets using reannotated labels with extreme gradient

boosting (XGBoost). To reannotate the data, they cleverly employed methods from the

field of flow cytometry to “gate” cells based on protein expression using a series of bivariate

protein expression plots and manually drawing shapes around groups of cells. This reanno-

tation process, however, is very time-intensive and requires concurrent protein expression in

cells. Even with this detailed approach, differences in protein measurements across datasets

limited their ability to achieve consistently fine annotations across all datasets. Similarly,

Conde et al. (2021) employed a two-step reannotation process. First, with expert input,

they attempted to reconcile and rename labels across datasets to achieve a consistent set of

labels. Second, they fit a ridge-penalized multinomial logistic regression model on datasets
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Dataset # of labels Reference(s)

hao 2020 28 Hao et al. (2020)
tsang 2021 18 Liu et al. (2021)
haniffa 2021 16 Stephenson et al. (2021)
su 2020 13 Su et al. (2020), Shasha et al. (2021)
10x pbmc 5k v3 12 10x Genomics (2019), Shasha et al. (2021)
blish 2020 12 Wilk et al. (2020)
kotliarov 2020 9 Kotliarov et al. (2020)
10x pbmc 10k 9 10x Genomics (2018), Shasha et al. (2021)
10x sorted 8 Zheng et al. (2017)
ding 2019 8 Ding et al. (2019)

Table 1: Number of labels and reference(s) for each of the peripheral blood single-cell ge-
nomics datasets analyzed in Section 6.

for which they successfully renamed labels for, and used this model to predict the labels

for the remaining unresolved datasets. Cells were clustered in each remaining dataset based

on gene expression, and each cluster was labeled on a majority vote of the predictions for

cells in that cluster. The predicted cluster labels were then treated as true labels for these

datasets, and the model was refit using all of the datasets. This approach motivates a two-

step approximation to our proposed method, which we term relabel (see Section 5.2) and

compare to throughout this paper.

1.3 Motivating application

Our motivation for this work was to build a new and generalizable model for high-resolution

cell type annotations for peripheral blood mononuclear cell (PBMC) samples by combining

many publicly available datasets. We collected and processed a total of ten datasets se-

quenced using 10x Genomics technology, each with raw gene expression counts and curated

cell type annotations available for each cell. We chose to work with PBMC data due to

the complexity and hierarchy of immune cell types, as well as the common application of

single-cell sequencing of PBMCs in clinical studies (Su et al., 2020; Stephenson et al., 2021;

Wilk et al., 2020). Each of the ten datasets have labels at different resolutions, and although

labels do not follow a tree-structure across datasets, they are amenable to binning. The

number of distinct labels in each dataset, as well as references for the dataset, are shown

in Table 1. The specific labels for each dataset are in Table 3 of the Supplementary Ma-

terial. We display the relationships between labels represented in each of these datasets in
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Figure 2 as graphical representations of “binning functions,” which are further described

in Section 2.1. The datasets we use are available through the R package AnnotatedPBMC

at https://github.com/keshav-motwani/AnnotatedPBMC/, where we also provide an in-

terface to our fitted model for predicting cell types from new single-cell gene expression

data.

2 Model

Suppose we observe K ≥ 1 datasets with single-cell gene expression profiles and cell types

manually annotated. Let Ck denote the set of labels used to annotate the kth dataset for

k ∈ [K] = {1, . . . , K} and let C denote the set of labels at the desired finest resolution across

all datasets. Let Y(k)i and Ỹ(k)i be the random variables corresponding to the annotated cell

type and true (according to the finest resolution label set) cell type of the ith cell in the kth

dataset for i ∈ [nk] = {1, . . . , nk}, k ∈ [K], with supports Ck and C, respectively. For the

remainder, let |A| denote the cardinality of a set A. Let X(k) = (x(k)1, . . . ,x(k)nk
)> ∈ Rnk×p

be the observed gene expression matrix, and (y(k)1, . . . , y(k)nk
)> ∈ Cnk

k be a vector of cell type

annotations for the kth dataset where y(k)i is the observed realization of the random variable

Y(k)i. Similarly, let X̃(k) = (x̃(k)1, . . . , x̃(k)nk
)> ∈ Rnk×p for k ∈ [K] be the unobservable

gene expression matrix which is free of batch effects. Our goal is to estimate probabilities

P (Ỹ = l|x) for l ∈ C and any x ∈ Rp.

2.1 Binned categorical responses

As described earlier, each dataset may have a different degree of resolution in their cell type

annotations. Again taking an informal example, we may have two datasets with observed cell

type labels in C1 = {A,B1, B2, B3} for the first dataset and C2 = {A1, A2, B} for the second

dataset, with C = {A1, A2, B1, B2, B3} being the set of finest categories at which resolution

we want to make predictions. We refer to the labels A and B as “coarse labels” since groups

of cells with these labels can each be partitioned into finer, more detailed categories (cells

with label A can be further divided into categories A1 or A2 and cells with label B can be

further divided into categories B1, B2, or B3), and refer to each of {A1, A2, B1, B2, B3} as

“fine labels” since they cannot be divided any further into more detailed categories. We

refer to data observed at the level of a coarse label as a binned observation, because labels

from finer categories are binned into one coarser label. For example, cells that are truly of
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Figure 2: Graphical representation of the relationship between observed (annotated) labels
and the finest resolution categories for each of the ten datasets from our integrative analysis
in Section 6. Within each row, when a color spans multiple finest resolution categories
(columns), this indicates cells of these fine resolution categories were “binned” into a broader
annotation label (coarse category) represented by the color. For example, in the ding_2019

dataset (bottom row), each cell was annotated with one of eight distinct labels. One of these
labels was “B cell” (represented by a pastel green color), and cells which could be described
in detail as one of either “B intermediate”, “B memory,” “B naive,” or “Plasmablast” are
binned into the coarser “B cell” label. White spaces denote finest resolution categories which
were not represented by the observed labels in a particular dataset.

cell type A1 and A2 are both binned into a label called A in the first dataset. We will now

make these ideas and definitions more formal by setting up some additional notation.

Define the user-specified binning function fk : C → Ck which maps a finest resolution

category to the label used to describe that category in the kth dataset. For example, f1(A1) =

A for dataset 1 above. This function bins fine categories together into the possibly coarser

resolution labels which are used in annotating the data, hence the name. Also, define the

“unbinning” function gk = f−1k (inverse image) where gk(j) = f−1k (j) = {l ∈ C : fk(l) = j}
for j ∈ Ck. This provides the set of fine categories to which a cell labeled at a coarser

resolution category may be further categorized as. For fine categories that are truly not

represented in a given dataset, fk can map from these categories to another label (named

“unobserved” for example). While C and the binning functions fk are user-specified, they

must satisfy the condition that for all l ∈ C, there must exist k ∈ [K] and j ∈ Ck such that

f−1k (j) = gk(j) = {l} with
∑nk

i=1 1(y(k)i = j) ≥ 1. In other words, each of the finest resolution
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categories must actually be observed at least once in at least one of the K training datasets.

Using this notation, we can now formally define j ∈ Ck to be a “coarse label” if |gk(j)|> 1

(i.e., the label can be broken up into multiple finer resolution categories) and a “fine label” if

|gk(j)|= 1 (i.e., the label cannot be further partitioned). We also now define the relationship

between Y(k)i and Ỹ(k)i through the following equivalence of events

{Y(k)i = j} =
⋃

l∈gk(j)

{Ỹ(k)i = l}, j ∈ Ck.

That is, a cell can be categorized within one of the finest resolution categories in the bin

corresponding to the observed label, with the correspondence defined by gk. We thus have

that

P (Y(k)i = j | x(k)i) =
∑
l∈gk(j)

P (Ỹ(k)i = l | x(k)i), j ∈ Ck (1)

since the events {Ỹ(k)i = l : l ∈ gk(j)} are mutually exclusive as a cell can only be of one cell

type.

2.2 Binned multinomial regression model

As mentioned, we are interested in modeling cell type probabilities as a function of gene

expression. For now, we consider a model using unobserved gene expression x̃(k)i, which is

free of batch effects, and will extend this in the next section to the observed gene expression.

Without loss of generality, we encode the sets of labels numerically so that C = {1, . . . , |C|}
and Ck = {1, . . . , |Ck|} for k ∈ [K].We assume that each Ỹ(k)i follows a categorical distribution

(i.e., multinomial based on a single trial)

Ỹ(k)i ∼ Categorical{π∗1(x̃(k)i), . . . , π
∗
|C|(x̃(k)i)}.

In addition, we assume that the probability functions π∗l adhere to the standard multinomial

logistic regression link so that

π∗l (x̃(k)i) =
exp(α∗l + x̃>(k)iβ

∗
l )∑

v∈C exp(α∗v + x̃>(k)iβ
∗
v)
, l ∈ C, k ∈ [K],

whereα∗ = (α∗1, . . . ,α
∗
|C|)
> ∈ R|C| is an unknown vector of intercepts and β∗ = (β∗1, . . . ,β

∗
|C|) ∈

Rp×|C| is an unknown matrix of regression coefficients. Applying exactly the logic from (1),
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it follows that

P (Y(k)i = j | x̃(k)i) =
∑
l∈gk(j)

π∗l (x̃(k)i) =

∑
l∈gk(j) exp(α∗l + x̃>(k)iβ

∗
l )∑

v∈C exp(α∗v + x̃>(k)iβ
∗
v)

, j ∈ Ck, k ∈ [K].

Thus, our focus is the development of a method for estimating α∗ and β∗. However, we first

extend the model to account for potential batch effects in the observed gene expression.

2.3 Adjustment for batch effects

The gene expression x(k)i can be assumed to be “noisy” in the sense that they may be

measured with some batch effects specific to each of the K datasets. For example, it may

be reasonable to assume that x(k)i = x̃(k)i + u(k)i where x̃(k)i is the the unobserveable gene

expression and u(k)i is some noise. This additive assumption of batch effects is consistent

with the existing literature on data integration for normalized gene expression data in single-

cell datasets, which provide methods for estimating the u(k)i (Haghverdi et al., 2018; Hao

et al., 2020). However, estimating the per-gene batch effect is not necessary for classification:

we need only estimate a linear combination of this batch effect, as we now describe.

We can write the linear predictor for the ith cell of the kth dataset as α∗ + x̃>(k)iβ
∗
l =

α∗ +x>(k)iβ
∗ −u>(k)iβ

∗. Because the u(k)i are not observable, we assume that there are some

common sources of batch variation which are related to some cell-specific covariates z(k)i ∈
Rr, and that u(k)i is some linear combination of these cell specific covariates u(k)i = z>(k)iφ

∗
(k)

for i ∈ [nk], k ∈ [K], and coefficients φ∗(k) ∈ Rr×p. It follows that the linear predictor for the

ith cell in the kth dataset is α∗ + x̃>(k)iβ
∗ = α∗ + x>(k)iβ

∗ − z>(k)iφ
∗
(k)β

∗ where α∗, β∗, and

the φ∗(k) are unknown. Letting γ∗(k) = −φ∗(k)β∗ (since both are unknown), we can see that

α∗ + x̃>(k)iβ
∗ = α∗ + x>(k)iβ

∗ + z>(k)iγ
∗
(k). Thus, we can write

P (Y(k)i = j | x(k)i, z(k)i) =
∑
l∈gk(j)

exp(α∗l + x>(k)iβ
∗
l + z>(k)iγ

∗
(k)l)∑

v∈C exp(α∗v + x>(k)iβ
∗
v + z>(k)iγ

∗
(k)v)

, j ∈ Ck, k ∈ [K]

(2)

In the simplest case, z(k)i = 1 (i.e., provides an intercept adjustment), which implies a batch-

specific shift in expression that is constant for all cells in the batch. Alternatively, z(k)i can

also contain the principal components of (X>(1), . . . ,X
>
(K))

> to capture interactions of batch

with other directions of variation in the data. It is worth emphasizing that here, we have

both batch specific coefficients to estimate, γ∗(k) for k ∈ [K], and coefficients shared across

batches, (α∗,β∗). With this, our goal will be to estimate α∗, β∗, and γ∗(k) via penalized
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maximum likelihood based on the observed predictors x(k)i for i ∈ [nk] and k ∈ [K].

3 Methodology

3.1 Penalized maximum likelihood estimator

From the probability functions described in Section 2.3, we see that the log-likelihood con-

tribution for the ith cell in the kth dataset can be expressed

l(k)i(α,β,γ(k)) =
∑
j∈Ck

1(y(k)i = j) log

 ∑
l∈gk(j)

exp(αl + x>(k)iβl + z>(k)iγ(k)l)∑
v∈C exp(αv + x>(k)iβv + z>(k)iγ(k)v)


for i ∈ [nk] and k ∈ [K], where 1 denotes the indicator function. We can therefore define

the (scaled by 1/N) negative log-likelihood as

L(α,β,γ) = − 1

N

K∑
k=1

nk∑
i=1

l(k)i(α,β,γ(k)),

where N =
∑K

k=1 nk is the total sample size and γ = (γ(1), . . . ,γ(K)) ∈ Rr×|C| × · · · × Rr×|C|.

We thus estimate α∗ and β∗, which are the shared across datasets, and γ∗(k) ∈ Rr×|C| for

datasets k ∈ [K] jointly using penalized maximum likelihood. For ease of display, let T =

R|C| × Rp×|C| × Rr×|C| × · · · × Rr×|C| be the space of the unknown parameters (α∗,β∗,γ∗).

Formally, the estimator of (α∗,β∗,γ∗) we propose is

arg min
(α,β,γ)∈T

{
L(α,β,γ) + λ

p∑
j=1

‖βj,:‖2 +
ρ

2

K∑
k=1

‖γ(k)‖2F

}
, (3)

where βj,: ∈ R|C| denotes the jth row of β for ∈ [p] = {1, . . . , p}, ‖·‖2 denotes the Euclidean

norm of a vector, ‖·‖F denotes the Frobenius norm of a matrix, and (λ, ρ) ∈ (0,∞)× (0,∞)

are user-specified tuning parameters. We now motivate the choice of penalties based on our

application.

Manual single-cell annotation is often performed through the identification of upregulated

genes within clusters of cells (Amezquita et al., 2020). For example, to label a cluster of

cells as type CD4+ naive, an annotater often identifies a number of particular genes that are

overexpressed in that cluster relative to the rest of the cells (Wolf et al., 2018; Hao et al.,
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2020). This implies that a relatively small number of genes are necessary to characterize the

relationship between cell type probabilities and gene expression. For this reason we use the

group lasso type penalty on the rows of the optimization variable β (Yuan and Lin, 2006;

Obozinski et al., 2011; Simon et al., 2013). For large values of λ, this penalty will encourage

estimates of β∗ which will have rows either entirely equal to zero or entirely nonzero. If

the j-th row of β∗ is zero, the j-th gene is irrelevant for discriminating between cell types.

The L1(vector)-norm penalty (i.e., the lasso penalty), in contrast, would not lead to easily

interpreted variable selection since a zero in a particular entry of β∗ does not alone imply

anything about whether the corresponding predictor affects the probabilities.

Regarding the ridge penalty on the γ(k): because the γ(k) are specific to each of the

training sets, we do not have corresponding coefficients for a test data point from a new

(i.e., unobserved for training) dataset. Additionally, we expect that the batch effect does

not contain information relevant to cell type classification. Therefore, we intuitively want

γ(k) to be close to the origin, so that on a test data point, we can simply use our estimates

α̂ and β̂ from (3) to estimate probabilities with

P̂ (Ỹ = l | x) =
exp(α̂l + x>β̂l)∑
v∈C exp(α̂v + x>β̂v)

, l ∈ C,

as if x̃ = x. To encourage estimates of the γ∗(k) to be small, we add a penalty of the

squared Frobenius norm of each γ(k). Additional intuition may be gleaned by considering

the Bayesian interpretation of ridge regression wherein the coefficients are assumed to follow

a mean zero normal distribution.

Importantly, the coefficients we intend to estimate are not, in general, identifiable. This

is because with 1|C| = (1, . . . , 1)> ∈ R|C|, for any (α,β,γ), L(α,β,γ(1), . . . ,γ(K)) = L(α −
a · 1>|C|,β − b1>|C|,γ(1) − d11

>
|C|, . . . ,γ(K) − dK1>|C|) for any a ∈ R, b ∈ Rp, and dk ∈ Rr for

k ∈ [K]. However, if we impose the “sum-to-zero” condition that α>1|C| = β>1,:1|C| = · · · =
β>p,:1|C| = 0, and similarly for the rows of the γ(k), then this issue may be resolved. It is

perhaps surprising that the γ(k) ∈ Rr×|C| could be identifiable since Ck may be distinct from

C, but one can see that replacing γ(k) with γ ′(k) will, in general, lead to distinct probabilities

(2) unless γ ′(k) = γ(k)−dk1>|C|. In the Supplementary Material, we discuss the (exceptionally

rare) situations where this is not true. Fortunately, both our penalties naturally enforce the

sum-to-zero constraints on β and the γ(k). For example, see the Supplementary Material of

Molstad and Rothman (2021) for a proof of this fact.
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3.2 Related methods

The approach proposed here is closely related to a growing literature on methods for in-

tegrative analyses. We discuss this literature from two perspectives: that of statistical

methodology and that of the analysis of multiple single-cell datasets jointly.

From a methodological perspective, there is a growing interest in developing methods for

jointly analyzing datasets from heterogeneous sources. Most often, these methods assume

distinct data generating models for each source and aim improve efficiency by exploiting

similarities across sources (Zhao et al., 2015; Huang et al., 2017; Ventz et al., 2021; Molstad

and Patra, 2021). For example, Huang et al. (2017) assumed a similar sparsity pattern for

regression coefficients corresponding to separate populations. Similarly, Molstad and Patra

(2021) assumed a shared low-dimensional linear combination of predictors explained the

outcome in all sources. The focus of our work is different: the sources from which the data

were collected are assumed to differ only in their response category label resolution (and,

to a lesser degree, may measure predictors with batch effects). Thus, these approaches are,

generally speaking, not directly applicable to our setting.

In the context of single-cell data analysis, integrative analyses often focus on the “align-

ment” of expression datasets in an attempt to remove batch effects for the purposes of clus-

tering and visualization (Haghverdi et al., 2018; Hie et al., 2019; Korsunsky et al., 2019; Hao

et al., 2020). As mentioned in the previous section, explicit estimation and removal of batch

effects is not necessary for the goal of cell type prediction. In fact, Ma et al. (2021) found that

removing batch effects through alignment-based methods actually decreased downstream cell

type prediction accuracy. Our inclusion of batch specific effects in (2) can, loosely speaking,

be thought of as performing alignment specifically tailored to prediction (assuming the z(k)i

are chosen appropriately).

4 Computation

In order to compute our proposed estimator, we must address that the group lasso penalty

is nondifferentiable at zero and that the overall negative log-likelihood L is nonconvex in

general. In brief, we employ a blockwise proximal gradient descent scheme (Xu and Yin,

2017) to overcome these challenges. Specifically, we obtain a new iterate by minimizing a

penalized quadratic approximation to L at the current iterate, which will ensure – by the

majorize-minimize principle (Lange, 2016) – a monotonically decreasing objective function

value. Our approximations are chosen so as to admit simple, closed form updates for each

12



block. In the remainder of this section, we motivate and derive each block update and

summarize our algorithm. Code implementing the algorithm described here is available for

download at https://github.com/keshav-motwani/IBMR/.

Let Fλ,ρ denote the objective function from (3). By construction, F0,0 denotes the nega-

tive log-likelihood L. To describe our iterative procedure, we focus on the update for β, but

as we will show, this approach also applies to α and the γ(k) with minor modification. First,

notice that given t-th iterates of α,β and γ, (αt,βt,γt), by the Lipschitz continuity of the

gradient of L when treated as a function of β alone, we know that for any step size sβ such

that 0 < sβ < N/{
√
|C|
∑K

k=1‖X(k)‖2F},

F0,0(α
t,β,γt) ≤ F0,0(α

t,βt,γt) + tr
{
∇βF0,0(α

t,βt,γt)>(β − βt)
}

+
1

2sβ
‖β − βt‖2F

for all β ∈ Rp×|C|, where∇βF0,0(α
t, ·,γt) denotes the gradient of β 7→ F0,0(α

t,β,γt). Letting

M(β | βt) denote the right-hand side of the above inequality, we can see that

Fλ,ρ(αt,β,γt) ≤M(β | βt) + λ

p∑
j=1

‖βj,:‖2 +
ρ

2

K∑
k=1

‖γt(k)‖2F ,

for all β ∈ Rp×|C| with equality when β = βt. If we thus define βt+1 as the argument mini-

mizingM(β | βt) +λ
∑p

j=1‖βj,:‖2, we are ensured that Fλ,γ(αt,βt+1,γt) ≤ Fλ,γ(αt,βt,γt).
Hence, defining βt+1 in this way, we have

βt+1 = arg min
β∈R|C|

{
M(β | βt) + λ

p∑
j=1

‖βj,:‖2

}
= arg min

β∈R|C|

{
1

2
‖β − νt(sβ)‖2F+sβλ

p∑
j=1

‖βj,:‖2

}
,

where νt(sβ) = βt − sβ∇βF0,0(α
t,βt,γt). The second equality above implies that βt+1 is

simply the proximal operator (Parikh and Boyd, 2014; Polson et al., 2015) of the ‖·‖1,2-
norm (sum of Euclidean norm of the rows of its matrix-valued argument) at νt(sβ). Some

straightforward derivations (e.g., see Simon et al. (2013)) reveal that the jth row of βt+1,

βt+1
j,: , can thus be obtained in closed form

βt+1
j,: = max

(
1− sβλ

‖νt(sβ)j,:‖2
, 0

)
νt(sβ)j,:, j ∈ [p].

We apply analogous arguments to update both γ with (αt,βt+1) fixed andα with (βt+1,γt+1)

fixed. For α, yields a standard gradient descent update, whereas for the γ(k), each can be

13
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Algorithm 1 Blockwise proximal gradient descent algorithm for minimizing Fλ,ρ
Initialize β0 ∈ Rp×|C|, α0 ∈ R|C|, and γ0

(k) ∈ Rr×|C| for k ∈ [K]. Set t = 0.

1. Compute νt(sβ) = βt − sβ∇βF0,0(α
t,βt,γt)

2. For j ∈ [p] in parallel, compute

βt+1
j,: = max

(
1− sβλ

‖νt(sβ)j,:‖2
, 0

)
νt(sβ)j,:

with sβ chosen by backtracking line search.

3. For k ∈ [K] in parallel, compute

γt+1
(k) =

(
1 + sγ(k)ρ

)−1 {
γt(k) − sγ(k)∇γ(k)

F0,0(α
t,βt+1,γt)

}
with the sγ(k) chosen by backtracking line search.

4. Compute αt+1 = αt − sα∇α(k)
F0,0(α

t,βt+1,γt+1) with sα chosen by backtracking line
search.

5. If objective function value has not converged, set t = t+ 1 and return to 1.

updated in parallel. Specifically, by the same motivation as in the update for β, we define

γt+1
(k) = arg min

γ(k)∈Rr×|C|

{
1

2
‖γ(k) − γt(k) + sγ(k)∇γ(k)F0,0(α

t,βt+1,γt)‖2F+
sγ(k)ρ

2
‖γ(k)‖2F

}
=
(

1 + sγ(k)ρ
)−1 {

γt+1
(k) − sγ(k)∇γ(k)F0,0(α

t,βt+1,γt)
}
.

With these updating expressions for β,α, and γ in hand, we formally state our iterative

procedure for minimizing Fλ,ρ in Algorithm 1. Applying an identical series of arguments as

those to prove that βt+1 yields a decrement of the objective function, we have the following

lemma regarding the sequence of iterates {(βt,αt,γt)}∞t=0.

Lemma 1. (Descent property) As long as each step size sβ > 0, sα > 0, sγ(k) > 0 is suffi-

ciently small and fixed or chosen by backtracking line search (see the Supplementary Mate-

rial), the sequence of iterates {(βt,αt,γt)}∞t=0 is guaranteed to satisfy Fλ,ρ(αt+1,βt+1,γt+1) ≤
Fλ,ρ(αt,βt,γt), for t = 1, 2, 3, . . . , i.e., Algorithm 1 has the descent property.

In the Supplementary Material, we derive explicit forms of the partial derivatives needed

in Algorithm 1. Because they provide some insight, we discuss them here. For each k ∈ [K],
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let P̃ (k) : R|C| × Rp×|C| × Rr×|C| × · · ·Rr×|C| → Rn×|C| be a matrix-valued function which

maps input parameters (α,β,γ) to a matrix of (unconditional) probabilities. Specifically,

P̃ (k)(α,β,γ(k)) has (i, l)-th entry

[P̃ (k)(α,β,γ(k))]i,l =
exp(αl + x>(k)iβl + z>(k)iγ(k)l)∑
v∈C exp(αv + x>(k)iβv + z>(k)iγ(k)v)

, l ∈ C, i ∈ [nk], k ∈ [K]. (4)

Similarly, let C̃(k) : R|C| × Rp×|C| × Rr×|C| × · · ·Rr×|C| → Rn×|C| be a matrix-valued function of

conditional probabilities where

[C̃(k)(α,β,γ(k))]i,l =
1{l ∈ gk(y(k)i)} exp(αl + x>(k)iβl + z>(k)iγ(k)l)∑

v∈gk(y(k)i) exp(αv + x>(k)iβv + z>(k)iγ(k)v)
, l ∈ C, i ∈ [nk], k ∈ [K].

(5)

Intuitively, [P̃ (k)(α,β,γ(k))]i,l is the estimated probability that cell i from dataset k is of

type l. The conditional probability [C̃(k)(α,β,γ(k))]i,l is the estimated probability that cell

i from dataset k is of type l ∈ C given y(k)i is the observed (possibly coarse) label. Of course,

if gk(y(k)i) is a singleton, then [C̃(k)(α,β,γ(k))]i,l = 1{l ∈ gk(y(k)i)}.
The gradients needed in Algorithm 1 can be expressed in terms of P̃ and C̃. In particular,

∇βF0,0(α
t,β,γt) =

1

N

K∑
k=1

X>(k)

{
P̃ (k)(α

t,β,γt(k))− C̃(k)(α
t,β,γt(k))

}
,

∇αF0,0(α,β
t+1,γt+1) =

1

N

K∑
k=1

{
P̃ (k)(α,β

t+1,γt+1
(k) )− C̃(k)(α,β

t+1,γt+1
(k) )
}>

1nk
,

∇γ(k)F0,0(α
t,βt+1,γ) =

1

N
Z>(k)

{
P̃ (k)(α

t,βt+1,γ(k))− C̃(k)(α
t,βt+1,γ(k))

}
, k ∈ [K].

Examining the form of these gradients, loosely speaking, we see our algorithm descends in

the direction determined the correlation between the predictors and the difference between

the unconditional and conditional estimated probabilities. The functions P̃ and C̃ are also

used later when we apply our method to the motivating data analysis.

In the Supplementary Material, we detail how we construct a set of candidate tuning

parameters (λ, ρ) yielding sparse fitted models. In brief, we use the KKT condition for (3)

to find a λ yielding β̂ = 0 and borrow an approach from glmnet for determining a reasonable

set of values for ρ.
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5 Simulation studies

We performed extensive numerical experiments to study how the sample size, number of

predictors, similarity of categories, and the magnitude of batch effects affect the performance

of various methods for estimating finest resolution cell type probabilities.

5.1 Data generating models

For each replication, we generated a total of 13 datasets: six datasets with sample size N/6

for fitting the model, six datasets with sample size N/6 for validation, and one dataset with

sample size 104 for evaluating performance. We considered N ∈ {2400, 4800, 9600, 19200}
to reflect the large number of cells available in real datasets. We set the number of finest

resolution categories to be fixed at 12 (C = {A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, F2})
and the binning functions fixed to have a structure inspired by the real data as shown by

Figure 2. Specifically, in the real data, most cell types are observed at a coarse resolution

in most datasets and at finest resolution in only a few datasets. Therefore, we chose to

bin categories A1, A2, B1, B2, C1, C2, D1, D2, E1, and E2 into groups of two for Datasets 1–

4. That is categories A1 and A2 are binned together, B1 and B2 are binned together,

and so on. However, we set it so that these categories would be observed at the finest

resolution in Datasets 5 and 6. Also, in the real data, some cell types are labeled at the

finest resolution in all datasets (for example, CD14+ Monocytes and CD16+ Monocytes in

Figure 2). Hence, we chose categories F1 and F2 to be observed at the finest resolution in

all datasets. A graphical representation of these binning functions is shown in Figure B.1 of

the Supplementary Material. The validation datasets, Datasets 7–12, are generated in the

same way as Datasets 1–6. For the test dataset, all observations are observed at the finest

resolution in order to fully evaluate parameter estimation.

In manual single-cell annotation, cell types are binned together due to their similar gene

expression. We reflected this to varying extents in the structure of β∗ ∈ Rp×12, where we

consider p ∈ {250, 500, 1000, 2000}. We first randomly select 100 of the p rows to be nonzero

in β∗. Of these 100 rows, we select s many rows for which their coefficients are identical

within the coarse groups described above, i.e. for these s rows, the coefficients for category

A1 and A2 are identical, coefficients for category B1 and B2 are identical, and so on. For the

remaining 100 − s nonzero rows of β∗, the coefficients for all categories are unrelated. We

sample each of the nonzero distinct elements from a Normal(0, 2) distribution. This structure

to β∗ controls the similarity of fine cell types within a coarse label. With s = 0, even though
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two categories may be binned together, they are unrelated and there is no true hierarchy

of cell types. With larger s, fine categories within a coarse label are increasingly related,

meaning there is true hierarchy to the cell type categories and cells are binned according to

this hierarchy. We consider s ∈ {0, 20, 40, 60, 80}.
Finally, to simulate the effect of batch effects in the predictors, we generated X(k) =

X̃(k) + U (k) where U (k) = (u(k)1, . . . ,u(k)nk
)> ∈ Rnk×p. Each row of X̃(k) is independently

simulated from a p-dimensional multivariate normal distribution with mean 0 and AR(1)

covariance matrix with lag 0.5. We consider a simple model for the batch effect itself, in

which the batch effect is identical for every observation within a batch. This may also

be reasonable in the real data, as the presence of background contamination, also known

as ambient RNA, is a common source of batch effects, and it may affect all cells within

the experiment similarly (after normalization) (Young and Behjati, 2020). Therefore, we

generate u(k) ∈ Rp as a realization from a p-dimensional mean zero multivariate normal

distribution with covariance Ip and set U (k)i,: = a ·u(k), where a is a scalar chosen to control

b = ‖U (k)‖F/‖X̃(k)‖F . We consider b ∈ {0, 0.025, 0.05, 0.1, 0.2, 0.4}. The test dataset is

observed with no batch effect, again in order to best evaluate parameter estimation.

5.2 Competing methods

We first consider two variants of our method, IBMR-int and IBMR-NG. For IBMR-int, we set

z(k)i = 1 for all i ∈ [nk], k ∈ [K], and fit the proposed model using (3). For IBMR-NG, we set

γ(k) = 0 for all k ∈ [K], where “NG” stands for “no Gamma”, and estimate only α∗ and β∗

using (3). This is a version of our method which ignores possible batches entirely.

We also consider two alternative methods, subset and relabel. For subset, we “mix-

and-match” data from different datasets by subsetting each dataset to only the data that

is annotated at the finest resolution and fit a model based on the stacked data. Specif-

ically, define for k ∈ [K], the set of indices in the kth dataset for which the outcome

was observed at the finest resolution: Ik = {i : |gk(y(k)i)|= 1}. Then, we fit a group

lasso-penalized multinomial logistic regression model using (3), but with y(k)i replaced with

gk(y(k)i) for k ∈ [K] and i ∈ Ik, Ck replaced with C for k ∈ [K], and L(·, ·, ·) replaced with

−(
∑K

k=1|Ik|)−1
∑k

k=1

∑
i∈Ik l(k)i(·, ·, ·). However, because of potential confounding, we do

not consider a batch effect (i.e., require γ(k) = 0). The model can thus be fit using existing

software (e.g., glmnet), but since the objective function is identical to our method when

using only subsetted data, we use our implementation for consistency in the algorithm and

convergence criterion.
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For the other method, relabel, we first obtain estimates of (α∗,β∗) using subset,

denoted (ᾱS, β̄
S
). Using these estimates, we can “relabel” our training data to have outcomes

at the finest resolution by choosing the category with the highest conditional probability (as

defined in (5)) ỹS(k)i = arg maxl∈C[C̃(k)(ᾱ
S, β̄

S
,0)]i,l. We then fit the multinomial logistic

regression model to ỹS, treating these as the observed labels. To be clear, all the training

responses ỹS are (synthetically) at the finest resolution, so one fits (3) but each Ck is replaced

with C.
Finally, we also consider oracle (ORC) versions of these methods, in which data at the finest

resolution for all datasets is available. IBMR-int-ORC is the same as IBMR-int, with coarse

resolution data replaced by the (otherwise unobserved) fine resolution data. By definition of

IBMR-NG, subset, and relabel, when all the data is at the finest resolution, the estimators

are equivalent to the standard group lasso penalized multinomial logistic regression model.

Therefore, we name the oracle version of these estimators GL-ORC, where “GL” stands for

“group lasso.”

5.3 Results

We present the complete simulation study results in Figure 3. In the first column of Figure

3, we present results with the total sample size N ∈ {2400, 4800, 9600, 19200} varying, and

p = 500, s = 40, b = 0.1 fixed. We see that with increasing sample size, the KL divergence,

Hellinger distance, and error rates decrease for all methods, as expected. Of the non-oracle

methods, for all sample sizes considered, IBMR-int and IBMR-NG perform the best and are

much closer to the oracle methods in which all data is observed at the finest resolution, as

compared to relabel and subset.

In the second column of Figure 3, we vary the total number of genes p ∈ {250, 500, 1000, 2000}
(all with 100 nonzero rows of β∗), with N = 4800, s = 40, and b = 0.1 fixed. We see that with

increasing number of genes, all performance metrics increase for all methods, as expected.

Again, the IBMR-based methods are much closer to the oracle methods than relabel and

especially subset.

In the third column of Figure 3, we vary the similarity of cell type categories within

coarser groups by considering s ∈ {0, 20, 40, 60, 80}, the number of nonzero rows of β∗ for

which fine categories within a coarse label share coefficients. We fix N = 4800, p = 500,

and b = 0.1. With s increasing, fine categories within a coarse group become more similar,

thus the Hellinger distance and error rates increase for all methods. This is because larger s

makes it more difficult to distinguish between the fine categories within a coarse group. KL
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Figure 3: (top) Kullback-Leibler divergence, (middle) Hellinger distance, and (bottom) error
rate for six competing methods with varying (left) N , the total sample size; (middle left) p,
the total number of features; (middle right) s, the number of nonzero features which have
shared coefficients for fine categories within a coarse label; and (right) b, the ratio of the
norm of the batch effect and norm of the true predictors. Error bars denote the standard
error for each method across 50 replicates. Throughout, the defaults are N = 4800, p = 500,
s = 40, b = 0.1.

divergence is relatively constant, but slightly increases for IBMR-based methods at s increases.

For all values of s, IBMR-based methods again perform more similar to the oracle methods

than do relabel and subset.

For simulation results displayed in the last (rightmost) column of Figure 3, we fixed

N = 4800, p = 500, and s = 40 and varied the batch effect size by considering b ∈
{0, 0.025, 0.05, 0.1, 0.2, 0.4}. We see that with increasing batch effect, IBMR-int outperforms

IBMR-NG, with the error rate of IBMR-int staying relatively constant until b = 0.2. Of course

b = 0.2 represents a quite large batch effect: in this situation the norm of the batch effect

is, loosely speaking, 20 percent of the norm of the true gene expression. Again, IBMR-based

methods are closest to oracle methods.
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6 Application to integrative cell type annotation

In this section, we apply our method to single-cell gene expression data from 10 publicly

available peripheral blood mononuclear cells (PBMC) datasets with annotations at various

resolutions and labels across datasets. These datasets can be downloaded in a standard-

ized format as Bioconductor SingleCellExperiment objects from https://github.com/

keshav-motwani/AnnotatedPBMC. Table 1 lists the datasets used and the number of cell

type labels per dataset. Table 3 gives the specific labels used in each dataset. The specifics

of preprocessing of the data are described in Section A of the Supplementary Material.

6.1 Comparison to subset and relabel

In order to assess the performance of our method compared to competitors, we fit each

method on eight datasets at a time, leaving out one validation dataset and one test dataset.

In order to keep the binning functions the same across all train/validation/test splits, we kept

the hao_2020 dataset in the training set always because it had the finest resolution labels.

We therefore defined the finest resolution categories across all datasets (C) to be those used

in the hao_2020 dataset, and defined the binning functions (fk) as graphically depicted in

Figure 2. We evaluate performance over all 72 combinations of training/validation/test splits

of eight training datasets (necessarily containing hao_2020), one validation dataset and one

test dataset. We choose tuning parameters based on validation set negative log-likelihood,

and measure performance using test set negative log-likelihood and error rate with the fitted

parameters.

To reduce computational complexity, we perform screening on genes by ranking genes

as described in Section A of the Supplementary Material, and select the first p genes for

each dataset. Also, for each training dataset, we sample nk cells using a weighted sampling

procedure – also described in Section A of the Supplementary Material – in order to encourage

oversampling extremely rare cell types and undersampling common cell types.

We first assessed the test set negative log-likelihood of each of the non-oracle meth-

ods considered in the simulation study when varying the sample size per dataset nk ∈
{1250, 2500, 5000, 10000} with the number of genes p = 1000 fixed. We repeat this five

times, as the sampling of cells from each dataset is random. We then compute the negative

log-likelihood for nine test datasets, each using one of the remaining eight datasets as a

validation set, and the rest of the datasets as traning datasets, across five replicates. We

first compute the average and standard error of the negative log likleihood across the five
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Figure 4: Negative log-likelihood for each method considered, for each test dataset (subplots),
for varying numbers of cells per dataset used for fitting the model with the number of
genes p = 1000 fixed. Points denote the average of the average negative log-likelihood
across validation sets, for which each training/validation/test dataset combination had five
replicates of different subsampled training datasets, and error bars show the standard error
of averages across validation sets.

replicates for each train/validation/test dataset combination, and then summarize the re-

sults for each test dataset by taking the average and standard error of these averages across

all of the train/validation dataset combinations considered. These summarized results per

test dataset are shown in Figures 4, with the complete results for each validation and test

dataset combination in Figure B.2 of the Supplementary Material. In general, the negative

log-likelihood decreases or stays relatively constant with increasing sample size for all meth-

ods. IBMR-int tends to perform slightly better than IBMR-NG on some datasets, as fitting

a batch-specific intercept term helps in these cases. In general, IBMR-based methods always

do as well or better than relabel, and subset always performs the poorest.

While the negative log-likelihood illustrates prediction performance in terms of estimated
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Figure 5: Error rate for each method considered, for each test dataset (subplots), for varying
numbers of cells per dataset used for fitting the model with the number of genes p = 1000
fixed. Points denote the average of the average negative log-likelihood across validation sets,
for which each training/validation/test dataset combination had five replicates of different
subsampled training datasets, and error bars show the standard error of averages across
validation sets.

probabilities as a continuous value, it is more difficult to interpret than, say, classification

error rate. For this reason, we also considered error rate, which is slightly more complicated

to define in this setting. Specifically, in order to define an “error,” we must make predictions

from the same set of labels used in the test dataset. We refer to these as “coarse predictions”

and define them as follows. Let ftest : C → Ctest be the binning function for the test dataset

labels, and gtest = f−1test be the unbinning function as defined before. Because there may be

labels in Ctest which are bins of categories in C not observed in the test dataset in order

to properly define the binning functions (named “unobserved” for example, as described

earlier), we define C̈test as follows: C̈test = {j ∈ Ctest :
∑ntest

i=1 1
(
y(test)i = j

)
> 0}. That is, it

is a subset of Ctest for which we actually observe cells annotated with that label.
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We can then predict only within these labels to be consistent with the observed labels,

which we call “coarse predictions”. We have that the predicted probabilities at this coarse

level are defined by

[P̂ (test)]i,j =

∑
l∈gtest(j)

exp(α̂l + x>(test)iβ̂l)∑
u∈C̈test

∑
v∈gtest(j)

exp(α̂v + x>(test)iβ̂v)
, j ∈ C̈test,

and we then define the ith “coarse prediction” as arg maxj∈C̈(test){[P̂ (test)]i,j}.
The summarized error rate results per test dataset are shown in Figure 5 and complete

results in Figure B.2 of the Supplementary Material. In general, there is increased variability

in results across test datasets for error rate than for negative log-likelihood. Even so, in six

out of nine test datasets considered, IBMR-int and IBMR-NG outperform relabel and subset,

with subset resulting in error rates nearly double those of IBMR-int, IBMR-NG, and relabel

in some cases.

We next performed a similar experiment: with the sample size per dataset nk = 5000

fixed, we varied the number of predictors p ∈ {250, 500, 1000, 2000}. Once again, we adopted

the same setup for training/validation/test splits, and 5 replicates per split to account for

subsampling variability. The summarized results per test dataset are shown in the Supple-

mentary Material, in Figures B.4 (negative log-likelihood) and B.5 (error rate), with the

complete results for each validation and test dataset combination in Figures B.6 (negative

log-likelihood) and B.7 (error rate). Overall, we see that accounting for the batch effect with

IBMR-int usually improves upon IBMR-NG, with relabel generally falling behind IBMR-based

methods. The method subset consistently performs poorly compared to the other methods

for all datasets.

6.2 Annotating or refining cell type labels on new datasets

In this section, we use our fitted model to annotate and refine cell type labels on a new

dataset. For this, we turn our attention to the IBMR-int model fit in the last section with

tsang_2021 as the validation set and ding_2019 as the test dataset, for the first replicate of

the experiment with nk = 10000 and p = 1000. We choose tsang_2021 to be the validation

set because it has the finest annotations over all validation sets considered and we chose to

predict on ding_2019 because it has the most coarse annotations.

There are three types of predictions we may consider: (i) a prediction of the finest

resolution categories based on our model, which was the primary motivation; (ii) if we have
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Figure 6: Heatmap showing the percentage of cells in (left) coarse and (right) fine predicted
categories for each observed label in the ding_2019 dataset. Dots indicate that exactly 0
cells are in that combination of observed label and prediction.

already observed coarse annotations on a dataset, we can make predictions of the finest

resolution categories, conditional on already observed coarse label; or (iii) coarse predictions

as described in the previous section for performance evaluation. Note that (ii) is especially

useful when only coarse labels are used in annotating a dataset initially, but more refined

annotations are desired for downstream analyses.

In the case where we are simply interested in predicting fine resolution categories on

a dataset with only gene expression observed, (i), we define the ith “fine prediction” as

arg maxl∈C{[P̃ (test)(α̂, β̂,0)]i,l} where P̃ (test) is defined as in (4). Alternatively, if we want to

predict fine resolution categories, but have observed both gene expression and coarse reso-

lution annotations, we can condition on the coarse label and obtain conditional predictions,

i.e., prediction of type (ii). In effect, this refines the existing annotations based on the fit-

ted model and provides more detailed annotations. In this case, we define the “conditional

predictions” as arg maxl∈C{[C̃(test)(α̂, β̂,0)]i,l} where C̃(test) is defined as in (5). Note that

if an observation already has a fine label, then the label will not change by the definition of

the conditional probabilities, so there will not be contradictory results.

In Figure 6, we show the coarse predictions and fine predictions, and the percentage of

each of the observed labels which are predicted as a given category for these two types of

predictions. The model does very well at predicting at the coarse level, with few predictions

in the off-diagonal elements of the heatmap. The fine predictions generally agree very well

with the coarse observed annotations, while giving additional information. In Figure 7, we

once again show the same coarse predictions as a reference, and also take advantage of the

already coarsely labeled data to provide predictions conditional on the observed coarse an-
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Figure 7: Heatmap showing the percentage of cells in (left) coarse and (right) conditional
predicted categories for each observed label in the ding_2019 dataset. Dots indicate that
exactly 0 cells are in that combination of observed label and prediction. Note that the
difference between Figure 6 and this figure is that the (right) panel is showing conditional
predictions rather than fine predictions.

notations. These conditional predictions only split up an observed label into finer categories

by definition, so they provide additional detail and do not ever contradict the initial coarse

annotations.

In order to showcase interpretability of the model coefficients for this same fitted model

considered above, we display the genes corresponding to the top 10 standardized coefficients

per finest resolution category in Table 2. Many of these genes overlap with commonly used

marker genes for these cell types, as shown in bold in 2, based on marker genes by Hao et al.

(2020) for these categories. Note that these marker genes were defined by Hao et al. (2020)

only on the hao_2020 dataset, and were the result of performing hypothesis testing on the

gene expression of a particular gene within cells of a category compared to all other cells, so

these same genes may not be optimal for classification purposes.

7 Discussion

In this article, we proposed a new method for integrating multiple datasets where observation

labels are available at different resolutions. Overall, IBMR-based methods outperformed other

competitors under all simulation settings, and generally performed better in the application

to single-cell genomics data, with relabel only having close performance in a small number

of cases. However, there are additional aspects of the methods to be considered in terms

of performance and practical usage. Specifically, while relabel could be considered a two-
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Cell type Genes

ASDC TCF4 SOX4 PPP1R14A HLA-DRA GPR183 S100A4 IRF8 CD74 ITM2C S100A10
B intermediate MS4A1 CD79A BANK1 RALGPS2 GPR183 HLA-DRA TCF4 MALAT1 TNFRSF13B TNFRSF13C

B memory MS4A1 HLA-DRA BANK1 LTB CD79A ITGB1 TNFRSF13B CD74 MALAT1 TNFRSF13C
B naive MS4A1 CD79A CD74 HLA-DRA TCL1A LTB FCGR3A BANK1 LINC00926 YBX3

CD14 Mono LYZ S100A8 TYROBP HLA-DRA FCN1 CD14 FTL PSAP AIF1 HLA-DRB1
CD16 Mono FCGR3A AIF1 MS4A7 LST1 CDKN1C TYROBP PSAP NAP1L1 S100A4 IFITM3

CD4 CTL CCL5 GNLY IL7R NKG7 S100A4 ITGB1 CD3G IL32 MALAT1 CD3D
CD4 Naive LTB CCR7 CD3D MALAT1 CD3E NOSIP CD7 NKG7 FHIT LDHB
CD4 TCM S100A4 CD3D LTB IL7R CD52 ANXA1 ITGB1 IL32 S100A11 CD40LG
CD4 TEM IL7R GZMK CCL5 KLRB1 IL32 LTB GPR183 CD3G S100A4 MALAT1
CD8 Naive CD8B CD8A CTSW CD3D S100B MALAT1 FCGR3A AIF1 CD7 HCST
CD8 TCM CD8B CD8A IL7R CCL5 IL32 LTB S100A4 ITGB1 ANXA1 CTSW
CD8 TEM CCL5 CD8A CD8B GZMK NKG7 CD3D CTSW IL32 MALAT1 GZMH

cDC1 HLA-DRA CADM1 CD74 IRF8 HLA-DPB1 HLA-DPA1 LYZ ID2 S100A10 HLA-DRB1
cDC2 CD74 FCER1A HLA-DRA CD1C HLA-DPA1 TYROBP HLA-DPB1 VIM S100A10 CST3

dnT GZMK NUCB2 GPR183 CD8B MALAT1 CD3D CD3G HBB FXYD2 CCR7
Eryth HBB CD8B CD8A FCGR3A IL7R MS4A1 AHNAK PSAP DUSP1 TNFAIP3

gdT CCL5 IL7R KLRD1 CD3D KLRC1 IL32 CD3G KLRB1 NKG7 RTKN2
HSPC SPINK2 PRSS57 SOX4 AIF1 RPS20 HLA-DRA CYTL1 PPBP CD79A LST1

ILC KLRB1 IL7R ITGB1 TNFRSF18 GPR183 TNFRSF4 LTB IL2RA MALAT1 SPINK2
MAIT KLRB1 GZMK IL7R CD8A CD8B CCL5 S100A4 LTB NKG7 NCR3

NK GNLY FCGR3A TYROBP PRF1 CTSW NKG7 KLRB1 KLRD1 KLRF1 CD247
NK˙CD56bright GNLY GZMK XCL1 CTSW KLRC1 KLRD1 TYROBP KLRB1 XCL2 NKG7

pDC TCF4 ITM2C MZB1 SERPINF1 CD74 IRF8 PLD4 HLA-DRA TCL1A GPR183
Plasmablast MZB1 CD79A ITM2C ITGB1 TNFRSF13B PRDM1 CPNE5 AQP3 POU2AF1 TCF4

Platelet PPBP TUBB1 CD8B SPARC NRGN HBB CCL5 IL7R CD8A ITGB1
Treg Memory RTKN2 IL32 TIGIT CTLA4 FOXP3 S100A4 IKZF2 IL2RA ITGB1 LTB

Treg Naive IL32 RTKN2 CD3D CD3E IL2RA LTB FOXP3 DUSP1 CTLA4 IKZF2

Table 2: Top 10 genes with largest standardized coefficients for each of the finest resolution
categories (rows). These genes align with commonly used marker genes (bolded) for manually
annotating cell types based on Hao et al. (2020).

step “approximation” to IBMR-NG, it involves two tuning parameters, and for each tuning

parameter combination, two optimization problems must be solved. Each of these problems

are similar in complexity to IBMR-NG. Therefore, IBMR-NG, which only involves one tuning

parameter and one optimization problem, is arguably preferable to relabel as it is faster

and, in general, more accurately estimates test set probabilities. Additionally, in the real data

and even under large batch effects in simulations, IBMR-NG performs similarly to IBMR-int,

which also involves two tuning parameters. Therefore, it may be reasonable to use IBMR-NG

as an approximation to IBMR-int to further reduce computing times. These latter findings

cohere with those in Ma et al. (2021), who found adjusting for batch effects did not have a

substantial impact on cell type prediction.

There are multiple directions for future research. First, we have assumed a multinomial

logistic regression model. Instead, it may be preferable to use a semiparametric or non-

parameteric approach for modeling the probabilities (2). For example, the application of

random forests to this context may perform well. Second, our method did not exploit the

similarity of cell types within a coarse category in any way. For example, in Section 5 we

generated data such that coefficient vectors for two cell types belonging to a coarse category

were more similar compared to cell types which did not belong to a shared coarse category.

We are currently developing an extension of our method which can exploit this feature.
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